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Multiple quantum spin dynamics is studied using analytical and
numerical methods for one-dimensional finite systems of nuclear
spins 1

2 coupled by dipole–dipole interactions at low temperatures.
Exact expressions for intensities of multiple quantum coherences at
low temperatures were obtained in the approximation of the near-
est neighbor interactions. The time growth of multiple quantum
coherences was analyzed numerically when all the dipole–dipole
interactions in one-dimensional systems consisting of 6 ÷ 8 spins
were taken into account. It is shown that the growth of multiple
quantum coherences gets faster when the temperature decreases,
and the intensities of multiple quantum coherences can be negative
at low temperatures. C© 2002 Elsevier Science (USA)

Key Words: multiple quantum NMR; exactly solvable models;
low temperatures; supercomputer simulations.
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1. INTRODUCTION

Multiple quantum (MQ) NMR is a powerful tool for inves-
gations of structural properties in solids (1). Although many
perimental and theoretical works consider a high-temperature
gion (2–4), MQ methods give much promise at low temper-
ures too. The point is that one can neglect the spin–lattice
laxation at low temperatures during the time scale of MQ spin
namics and can hope to obtain exact and clear information
out spin dynamics of one-dimensional systems in MQ NMR
periments. This will facilitate the comparison of MQ experi-
ents with theory.
We study analytically and numerically the behavior of one-
mensional systems at low temperatures under MQ NMR ex-
riments. At initial time τ = 0 the system of nuclear spins is
sumed to be at thermal equilibrium with the lattice and the
uilibrium spin density operator ρeq given as

ρeq = 1

Z
eβω0 I z

, [1]

here ω0 is the Larmor frequency, β−1 is proportional to the
eeman temperature, I z is the z component of the spin angular
omentum operator, and Z = Tr[exp(βω0 I z)] is the partition
nction. Consider a two-dimensional time-resolved MQ NMR
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xperiment (1–3) for one-dimensional systems (linear chains or
ngs). During the excitation period τ let the spin system be
riven by a sequence of RF pulses and its behavior be described
y the 2-spin/2-quantum Hamiltonian

H = H+2 + H−2, [2]

here

H±2 = −1

2

∑
i< j

Di j I ±
i I ±

j . [3]

he I ±
j are the raising and lowering spin angular operators of

in j , and Di j is the dipolar coupling constant between spins i
nd j given by

Di j = γ 2h

2r3
i j

(1 − 3 cos2 θi j ), [4]

here ri j is the distance between spins i and j , and θi j is the
ngle between the internuclear vector ri j and the Zeeman field.

the plane linear chains and rings (the external magnetic field
perpendicular to their planes) the angle θi j is the same for all

airs of spins. We shall assume at analytical calculations that the
istances between nearest neighbors rii+1 are the same. It means
at the dipolar coupling constants are equal, i.e., Dii+1 = D.
he dipole–dipole interaction (DDI) of the spins decreases as
−3 with the distance r . Thus the next nearest neighbors in plane
near chains interact eight times weaker than the nearest neigh-
ors do (the corresponding factor is 8 cos3( π

N ) for rings where
is the number of spins).
In the present work we investigate theoretically MQ dyna-
ics of one-dimensional spin systems at low temperatures. In
ection 3, we develop a new theoretical approach to MQ dynam-
s at low temperatures and find the exact expressions for intensi-
es of MQ coherences in the approximation of nearest neighbor
teractions. We demonstrate with computer simulations that
Q coherences of higher orders appear at earlier times than
ey do at high temperatures. One can hope to obtain a profile of
Q coherences at low temperatures without distortions caused
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by the spin–lattice relaxation. We also show that intensities o
higher order MQ coherences can change their signs in the cours
of a time evolution of the spin system at low temperatures. Thi
peculiarity of MQ dynamics can be useful for extracting new
physical–chemical information.

2. MQ COHERENCES AT LOW TEMPERATURES

A two-dimensional time-resolved MQ NMR experiment ha
the four periods: preparation, evolution, mixing, and detectio
(see Fig.1 and Ref. (1)). In the preparation period the system i
exposed to a sequence of pulses which leads to the appearanc
and the evolution of MQ coherences. We assume that this se
quence is periodic and that one period contains eight RF pulse
(1),

�

2
− X − �′ − X − � − X − �′ − X − � − X̄ − �′

− X̄ − � − X̄ − �′ − X̄ − �

2
, [5

where �′ = 2�+ tp are the time intervals between pulses (tp i
the pulse duration), and X and X̄ are resonant pulses having th
phase difference π which flip the spins by 90◦ about the x axi
of the reference frame rotating at the pulse carrier frequency
Then the average Hamiltonian determining the dynamics of th
nuclear spin system is given by Eq. [2] and the resulting signa
G(τ, t) stored as population information reads (1, 7)

G(τ, t) = Tr
[
I zeiHτ ei�ωt I z

e−iHτ ρeqeiHτ e−i�ωt I z
e−iHτ

]
, [6

where �ω is the RF offset, chosen to be larger than the loca
dipolar field frequency, τ is the excitation time, and t is th

evolution time. Such an experiment allows us to obtain the inte-
grated intensities over all the dipolar frequencies of the different
MQ o

1 [
ht βω0ρ

ht(τ )
]

[10]

rders. It is sufficient to obtain the important information

Jn(τ ) =
Z

Tr ρn (τ )e .
FIG. 1. A schematic presentati
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.

in MQ clustering experiments (8). We denote the densit
operator at the end of the preparation period at high temper
atures ρht(τ ) = exp(−iHτ )I z exp(iHτ ). It was calculated i
(4–6). Taking into account that ρht(τ ) = ∑

n ρht
n (τ ), where

is the order of the MQ coherence, we can rewrite Eq. [6
as

G(τ, t) =
∑

n

Tr
[
ρ(τ )e−i�ωt I z

ρht
n (τ )ei�ωt I z ]

=
∑

n

e−in�ωt Tr
[
ρ(τ )ρht

n (τ )
]
, [7

where ρ(τ ) = exp(−iHτ )ρeq exp(iHτ ) is the low-temperatur
spin density operator. Then the spectral intensities Jn(τ ) of orde
n and the partition function Z are (7 )

Jn(τ ) = Tr
[
ρ(τ )ρht

n (τ )
]
,

[8

Z = Tr
[
eβω0 I z ] = 2N coshN βω0

2
,

where N is the number of the spins in the one-dimensional sys
tem. Equation [8] can be rewritten as

Jn(τ ) = Tr
[
ρ(τ )ρht

n (τ )
] = Tr

[
ρ+(τ )

(
ρht

n (τ )
)+]

= Tr
[
ρ(τ )ρht

−n(τ )
] = J−n(τ ). [9

For analytical calculations of MQ coherences it is convenient t
use the following form of Eq. [8]
on of a time-domain MQ experiment.
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FIG. 2. Time-course of MQ coherences for a spin ring of N = 8 spins at βω0 = 0.

e second order (— —), (C) J4(τ ) + J−4(τ ) the fourth order (- - - - -), (D) J6(τ ) +

3. INTENSITIES OF MQ NMR COHERENCES IN
ONE-DIMENSIONAL SYSTEMS IN THE
APPROXIMATION OF THE NEAREST

NEIGHBOR DDI AT LOW TEMPERATURES

In order to calculate MQ intensities, one has first to diago-
lize the operator ρht(τ ). At first, we shall calculate the MQ
tensities for linear spin chains. In order to diagonalize the op-
ator ρht(τ ) we use the expression for ρn(τ ) for a linear chain
hich was obtained earlier in Ref. (4). Applying the unitary
ansformation U which is the composition of π -pulses applied
even spins (2, 4, 6, . . .) (4)

U = eiπ I z
2 eiπ I z

4 eiπ I z
6 . . . , [11]

e transform the Hamiltonian of Eq. [2] into the flip-flop
amiltonian (4),

Hflip = UHU+ = b
N−1∑
i=1

(I +
i I −

i+1 + I −
i I +

i+1), [12]

ith b = − 1
2 D. It is worth noticing the identity

T
H
h

ρ

w

t

a

UIzU+ =
N∑

j=1

(−1) j−1 I z
j . [13]

w

(20 mK). MQ coherence of (A) the zeroth J0(τ ) order (—), (B) J2(τ ) + J−2(τ )

−6(τ ) the sixth order (- · - · -).

e Liouville–von Neumann equation iρ̇ = [H, ρ] with the
amiltonian of Eq. [12] and the initial condition ρ(0) = UIzU+

s an exact solution (4, 9) which can be written as

t(τ ) = U+
[
− 2

N + 1

∑
k

e2iεkτ
N∑

n,m=1

(−1)m2n+m−2 sin(kn)

× sin(km)I z
1 · · ·I z

n−1 I +
n I z

1 · · ·I z
m−1 I −

m −1

4
(1−(−1)N )

]
U,

[14]

here εk = D cos k with k = πn
N + 1 , n = 1, 2, . . . , N .

At the next step we use the Jordan–Wigner transforma-
n (9)

βk =
√

2

N + 1

N∑
j=1

sin(k j)(−2) j−1 I z
1 · · · I z

j−1 I −
j , [15]

d express the MQ intensities via the fermion operators βk ,

Jn(τ ) = 1
Tr

[
ρ̃n(τ )eβω0

∑
k exp(−2iεkτ )β+

k βπ−k
]
, [16]
Z

here ρ̃n(τ ) = Uρht
n (τ )U+ is the transformed part of the
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FIG. 3A. Time-course of MQ coherences for a spin ring of N = 8 spins at β
the second order (— —).

high-temperature density operator. The exponential operator i
Eq. [16] can be written in the symmetric form for an even numbe
of spins N taking into account that

∑
k

e−2iεkτ β+
k βπ−k =

∑
0<k<π/2

(
e−2iεkτ β+

k βπ−k + e2iεkτ β+
π−kβk

)
[17

Finally, we use the transformations which are analogous to th
Bogolyubov ones (10),

βk = pkγk + qkγπ−k,
[18

βπ−k = rkγk + skγπ−k,

with the new fermion operators γk , γ +
k . If one chooses the coef

ficients in Eq. [18] as

pk = qk = 1√ e−iεkτ ,

2

[19]

rk = −sk = 1√
2

eiεkτ ,
ω0 = 10 (1 mK). MQ coherence of (A) the zeroth J0(τ ) order(—), (B) J2(τ )+ J−2(τ

the exponential operator of Eq. [16] becomes diagonal and ha
the form

eβω0
∑

0<k<π/2(γ +
k γk−γ +

π−kγπ−k ). [20

Analogous transformations can be performed with the operator
ρ̃ht

n (τ ). The corresponding diagonal parts are

ρ
diag
0 (τ ) =

∑
0<k<π/2

cos2(2εkτ )(γ +
k γk − γ +

π−kγπ−k),

[21

ρ
diag
±2 (τ ) = 1

2

∑
0<k<π/2

sin2(2εkτ )(γ +
k γk − γ +

π−kγπ−k).

According to Eq. [8] the intensities of multiple quantum coher
ences read

J0(τ ) = tanh

(
βω0

2

) ∑
0<k<π/2

cos2(2εkτ ),

[22

J (τ ) = 1
tanh

(
βω0

) ∑
sin2(2ε τ ).
±2

2 2 0<k<π/2
k

Equations [22] show that the profile of MQ coherences at low
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FIG. 3B. Time-course of MQ coherences for a spin ring of N = 8 spins at βω0

) J6(τ ) + J−6(τ ) the sixth order (- · - · -). The inset shows that the intensity of coh

mperatures consists of coherences of the zeroth and ±second
ders only. An analogous result was obtained earlier in Ref. (7 )
N → ∞. The term β+

π
2
βπ

2
appears in Eq. [17] for a linear

ain with the odd number N . This term is diagonal and we
ould not transform it using the Bogolyubov transformation of

q. [18]. Thus, we must exclude the index k = π
2 performing

is transformation. Then Eq. [16] can be written in the form

n(τ ) = 1

Z
Tr

[
ρ̃n(τ )eβω0

∑
k �=π/2 exp(−2iεkτ )β+

k βπ−k+βω0β
+
π/2βπ/2− 1

2 βω0
]
.

[23]

s a result, the MQ intensities have the form

J0(τ ) = 1

2
tanh

(
βω0

2

) ∑
0<k<π

cos2(2εkτ ),

[24]

J±2(τ ) = 1

4
tanh

(
βω0

2

) ∑
0<k<π

sin2(2εkτ ).

h
t

w

o

H
s
(
o

he MQ intensities for rings with an odd number N of the spins
n be found by the method described in Ref. (7 ). We use the

ri
ch
= 10 (1 mK). MQ coherence of (C) J4(τ ) + J−4(τ ) the fourth order (- - - - -),
erence of the sixth order can be negative.

gh-temperature solution from Ref. (11). As a result, we obtain
e MQ NMR spectral intensities (7 )

J0(τ ) = 1

2
tanh

(
βω0

2

) ∑
k

cos2(4bτ sin k),

[25]

J±2(τ ) = 1

4
tanh

(
βω0

2

) ∑
k

sin2(4bτ sin k),

ith k = 2πm
N , m = 1, 2, . . . , N .

For a ring with an even number N of spins we used the constant
motion C :

C = eiπ M ,

(
M = 1

2
N − I z

)
, [H, C] = 0. [26]

ence, the Hamiltonian of Eq. [2] consists of blocks corre-
onding to different eigenvalues of the operator exp(iπ M)
xp(iπ M) = ±1). In order to diagonalize the density matrix

ht

ht n

ng from Ref. (4). Applying the same technique as for the linear
ains one can find the expressions for the MQ coherences for
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FIG. 4. Time-course of MQ coherences for a spin chain of N = 8
(B) J2(τ ) + J−2(τ ) the second orders (— —), (C) J4(τ ) + J−4(τ ) the fourth o

a spin ring,

J0(τ ) = tanh

(
βω0

2

) ∑
0<k<π
α=o,e

cos2
(
2εα

k τ
)
,

[27

J±2(τ ) = 1

2
tanh

(
βω0

2

) ∑
0<k<π
α=o,e

sin2
(
2εα

k τ
)
,

where α is the even (e) or odd (o) block of the Hamiltonian fo
exp(iπ M) = 1 and exp(iπ M) = −1, respectively, εo

k = D cos
and εe

k = D cos(k + π
N ) with k = 2πl

N , l = 1, 2, . . . , N .
As we see, the structure of the exact solutions for finite one

dimensional systems has the same form as for high-temperatur
regions. At the same time the strong temperature dependence o
the MQ intensities is evident from the obtained results. It leads t
new peculiarities of the MQ dynamics which will be discusse
below.

4. THE TIME GROWTH OF MQ COHERENCES
AT LOW TEMPERATURES
We demonstrate here the results of numerical calculations of
the time growth of MQ coherences for short one-dimensional
ins at βω0 = 0.5 (20 mK). MQ coherence of (A) the zeroth J0(τ ) order(—
ders (- - - - -), (D) J6(τ ) + J−6(τ ) the sixth orders (- · - · -).

systems. We used the basic algorithm described in details i
Ref. (12). In all calculations the value of the DDI constan
of the nearest neighbors is assumed to be D = 2π · 2950 s−

and the dipolar coupling constant between spins i and j , Di j =
(D/2|i − j |3)(3 cos2 θi j −1). At τ = 0 the spin system is in ther
mal equilibrium and intensities of all coherences of the nonze
roth orders are equal to zero. In our calculations the paramete
βω0 which determines the temperature dependence of intensi
ties of MQ coherences is chosen between 1

2 and 10. It mean
that the temperature range for protons in the external magneti
field H0 = 5T is an interval between 1 and 20 mK. For numerica
calculations we used the modified formula of Eq. [8], which ha
the form,

Jn(τ ) = Tr
[
ρ(τ )ρht

n (τ )
] =

∑
Mi −M j =n

ρi j (τ )ρht
j i (τ ), [28

where Mi , M j are the projections of the total spin momentum
on the z axis. Figure 2 shows the time evolution of MQ coher
ences for the eight-spin ring at 20 mK and the analogous result
at 1 mK are presented in Figs. 3A, 3B. It is worth noticing tha
at small times t < 10−5 s the numerical results of Figs. 2, 3A

and 3B coincide with the analytical ones described by Eq. [27].
At short times MQ dynamics can be described by an exchange
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e second orders (— —), (C) J4(τ ) + J−4(τ ) the fourth orders (- - - - -), (D) J6(τ
herences of the fourth and sixth orders can be negative.

rocess between the zero-quantum and ±2-quantum coherence
rders both at high temperatures and at low ones. At the same
me, this process is symmetrical at high temperatures but it is
ymmetrical at low temperatures. Asymmetry of the exchange

rocess becomes brightly expressed at times t > 10−5 s at tem-
eratures lower than 10 mK. The effect can be explained if we
nsider the Taylor series for the density matrix operator ρ(τ ),

e.,

ρ(τ ) = e−iHτ eβω0 I z

Z
eiHτ = eβω0 I z

Z
+ iτ

[
H,

eβω0 I z

Z

]

+ τ 2

2

[
H,

[
eβω0 I z

Z
, H

]]
− · · · . [29]

he main conclusion is the following. At low temperatures MQ
herences of high orders emerge faster than at high tempera-
res. Taking into account that the spin–lattice relaxation is slow
low temperatures one can measure intensities of MQ coher-

s
s
i
a
c
e
h

O
E

w

ces of high orders without any distortions and compare them
ith the results of calculations presented here. Figures 4 and 5

n.
si
) + J−6(τ ) the sixth orders (- · - · -). The inset shows that the intensities of

ow the time evolution of the MQ coherences for the eight-
in chain at 20 and 1 mK, respectively. One can see from the
set of Fig. 5 that the intensities of coherences of the fourth
d sixth orders are negative at some preparation times τ . It
n be explained in the following way. The density matrix op-
ator ρ(τ ) can be expressed through the complete system of
gh-temperature density operators ρht

n (τ ) (n = 0, ±2, ±4, . . .)

ρ(τ ) =
∑

n

an(τ, β)ρht
n (τ ). [30]

ne can obtain the intensities of MQ coherences substituting
q. [30] in Eq. [8],

Jn(τ, β) =
∑

m

Tr
[
am(τ, β)ρht

m (τ )ρht
n (τ )

] = an(τ, β)J ht
n (τ ),

[31]

here J ht(τ ) is the high-temperature MQ intensity of the order
n
One can see from Eq. [31] that in the general case MQ inten-

ties can be negative at some times and temperatures. The point
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is that MQ NMR experiments are modulation ones. The initia
polarization which is 0Q coherence is transferred in the cours
of the MQ NMR experiment to a set of oscillating parts of th
longitudinal magnetization and the frequencies of these oscil
lations are determined by the orders of the MQ coherences. In
principle, the amplitudes of the oscillating parts of the longi
tudinal magnetization can have an arbitrary sign. At the sam
time, intensities of MQ coherences are always positive at high
temperatures (5, 6).

The developed analytical methods of MQ dynamics are ap
plied at very rigid restrictions (exactly equal spacing of the spins
only dipole–dipole nearest neighbor interactions, etc.). How
ever, one can use methods of perturbation theory to take into ac
count different special cases. The situation is strongly simplified
at numerical investigations when one can consider an arbitrary
one-dimensional spin system to investigate its MQ dynamic
completely. In particular, the program used can be applied to
systems with different spacing of spins, different chemical shift
for the different spins in the chain, and so on.

Multiple quantum NMR in solids remains an interesting and
very hard problem for theoretical investigations. We have deve
loped analytical and numerical methods for analyzing the MQ
dynamics of one-dimensional systems at low temperatures. Thi

theoretical investigation is a basis for an interpretation of the
results of future MQ NMR experiments at low temperatures.
MICS AT LOW TEMPERATURES 11
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